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In this work we examine how numerical optimiza-
tion can be used to create optimal quantum query al-
gorithms [1]. For this purpose we created a program
in Mathematica 5.2 which constructs a general quan-
tum query algorithm and then finds optimal values
of parameters using numerical optimization. We ap-
plied our program to all 3 and 4 argument Boolean
functions. To decrease the amount of computation

(there are 22N

N -argument functions, see Table 1)
we introduced the notion of symmetric functions.

Definition. Trivial reductions are following trans-
formations of Boolean function: argument inversion,
result inversion, swapping of two arguments.

Definition. Primitive reduction is a pair of se-
quences of trivial reductions - one sequence applied
to arguments of function, other - to result.

Definition. Two Boolean functions are said to be
primitively equivalent, if there exists a primitive re-
duction between them.

Theorem. If we have optimal quantum query al-
gorithm for some Boolean function f , then we can
transform it for any other primitively equivalent func-
tion g and obtained algorithm will also be optimal.

Thus we do not have to examine all Boolean func-
tions, but only those which are not primitively equiv-
alent. We are not interested in degenerated functions
(which have arguments that does not influence the
value of function). Number of such functions F (N)
is shown in Table 1.

To construct a general quantum query algorithm,
we must first specify general N × N unitary matrix.
We use a method similar to QR-factorization to con-
struct it from simple two-level matrices [2]:

N−1
∏

i=1

N
∏

j=i+1

Gij , (1)

where Gij is N × N identity matrix modified at po-
sitions

( gii gij
gji gjj

)

. We replace elements at these posi-
tions either with general 2 × 2 unitary matrix (4 un-
known real parameters: δ, σ, τ , and θ):

U =

(

ei(δ+σ+τ) cos θ ei(δ+σ−τ) sin θ

−ei(δ−σ+τ) sin θ ei(δ−σ−τ) cos θ

)

, (2)

N 1 2 3 4
F (N) 1 2 10 208

22N

4 16 256 65536

Table 1: Number of different (up to primitive reduc-
tion) nondegenerated Boolean functions F(N).

or rotation matrix (1 unknown real parameter θ):

R =

(

cos θ sin θ

− sin θ cos θ

)

. (3)

In the first case we obtain general unitary ma-
trix, in the second - general orthogonal matrix. For
N -argument function as oracle transformation we use

O =











(−1)x1 0 · · · 0
0 (−1)x2 · · · 0
...

...
. . .

...
0 0 · · · (−1)xN











. (4)

Therefore general quantum query algorithm with L

queries will have final amplitude distribution GL ·O ·

GL−1 · . . . · G1 · O · G0 · |0〉 which has c
n(n+1)

2 un-
known parameters (c is either 4 or 1). We varied
the number of questions and the number of ampli-
tudes being measured. In this way we found a class of
3-argument Boolean functions - f3

1 and seven classes
of 4-argument functions: f4

1 , . . . , f4
7 , which can be

computed by quantum query algorithm with fewer
questions than in deterministic case:

f3

1
=x1⇔x2⇔x3, f4

1
=x1⊕x2⊕x3⊕x4,

f4

2
=(! x1∧! x2∧x3∧x4)∨(! x1∧x2∧! x3∧x4)∨(! x1∧x2∧x3∧! x4)∨

(x1∧! x2∧! x3∧x4)∨(x1∧! x2∧x3∧! x4)∨(x1∧x2∧! x3∧! x4),

f4

3
=x1⇔x2⇔x3⇔x4,

f4

4
=(x1⇔x2⇔x3)∨(! x1∧x3∧x4)∨(x1∧! x3∧! x4),

f4

5
=(x1⇔x2⇔x3⇔x4)∨(! x1∧! x2∧x3∧x4)∨(x1∧x2∧! x3∧! x4),

f4

6
=(x1⇔x2⇔x3)∨(x1⇔x2⇔x4)∨(x1⇔x3⇔x4),

f4

7
=(x1⇔x2)∨(x1∧x3∧x4)∨(x2∧! x3∧! x4).
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