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In this work we examine how numerical optimiza-
tion can be used to create optimal quantum query al-
gorithms [1]. For this purpose we created a program
in Mathematica 5.2 which constructs a general quan-
tum query algorithm and then finds optimal values
of parameters using numerical optimization. We ap-
plied our program to all 3 and 4 argument Boolean
functions. To decrease the amount of computation
(there are 22" N-argument functions, see Table 1)
we introduced the notion of symmetric functions.

Definition. Trivial reductions are following trans-
formations of Boolean function: argument inversion,
result inversion, swapping of two arguments.

Definition. Primitive reduction is a pair of se-
quences of trivial reductions - one sequence applied
to arguments of function, other - to result.

Definition. Two Boolean functions are said to be
primitively equivalent, if there exists a primitive re-
duction between them.

Theorem. If we have optimal quantum query al-
gorithm for some Boolean function f, then we can
transform it for any other primitively equivalent func-
tion g and obtained algorithm will also be optimal.

Thus we do not have to examine all Boolean func-
tions, but only those which are not primitively equiv-
alent. We are not interested in degenerated functions
(which have arguments that does not influence the
value of function). Number of such functions F(N)
is shown in Table 1.

To construct a general quantum query algorithm,
we must first specify general N x N unitary matrix.
We use a method similar to QR-factorization to con-
struct it from simple two-level matrices [2]:
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where G;; is N x N identity matrix modified at po-
sitions (g7 9). We replace elements at these posi-
tions either with general 2 x 2 unitary matrix (4 un-

known real parameters: §, o, 7, and 6):
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N 1 2 3 4
F(N) 1 2 10 208
22" 4 16 256 65536

Table 1: Number of different (up to primitive reduc-
tion) nondegenerated Boolean functions F(N).

or rotation matrix (1 unknown real parameter 6):
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In the first case we obtain general unitary ma-
trix, in the second - general orthogonal matrix. For
N-argument function as oracle transformation we use
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Therefore general quantum query algorithm with L
queries will have final amplitude distribution G, - O -
Gp1-...-G1-0-Gg-|0) which has ¢ yn-
known parameters (c is either 4 or 1). We varied
the number of questions and the number of ampli-
tudes being measured. In this way we found a class of
3-argument Boolean functions - f{ and seven classes
of 4-argument functions: f{,..., 7, which can be
computed by quantum query algorithm with fewer
questions than in deterministic case:
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